Structure and organization of the mitochondrial genome of the unicellular red alga Cyanidioschyzon merolae deduced from the complete nucleotide sequence.

نویسندگان

  • N Ohta
  • N Sato
  • T Kuroiwa
چکیده

The complete nucleotide sequence of the mitochondrial genome of a very primitive unicellular red alga, Cyanidioschyzon merolae , has been determined. The mitochondrial genome of C.merolae contains 34 genes for proteins including unidentified open reading frames (ORFs) (three subunits of cytochrome c oxidase, apocytochrome b protein, three subunits of F1F0-ATPase, seven subunits of NADH ubiquinone oxidoreductase, three subunits of succinate dehydrogenase, four proteins implicated in c-type cytochrome biogenesis, 11 ribosomal subunits and two unidentified open reading frames), three genes for rRNAs and 25 genes for tRNAs. The G+C content of this mitochondrial genome is 27.2%. The genes are encoded on both strands. The genome size is comparatively small for a plant mitochondrial genome (32 211 bp). The mitochondrial genome resembles those of plants in its gene content because it contains several ribosomal protein genes and ORFs shared by other plant mitochondrial genomes. In contrast, it resembles those of animals in the genome organization, because it has very short intergenic regions and no introns. The gene set in this mitochondrial genome is a subset of that of Reclinomonas americana , an amoeboid protozoan. The results suggest that plant mitochondria originate from the same ancestor as other mitochondria and that most genes were lost from the mitochondrial genome at a fairly early stage of the evolution of the plants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complete sequence and analysis of the plastid genome of the unicellular red alga Cyanidioschyzon merolae.

The complete nucleotide sequence of the plastid genome of the unicellular primitive red alga Cyanidioschyzon merolae 10D (Cyanidiophyceae) was determined. The genome is a circular DNA composed of 149,987 bp with no inverted repeats. The G + C content of this plastid genome is 37.6%. The C. merolae plastid genome contains 243 genes, which are distributed on both strands and consist of 36 RNA gen...

متن کامل

Molecular phylogeny and evolution of the plastid and nuclear encoded cbbX genes in the unicellular red alga Cyanidioschyzon merolae.

The cbbX gene is generally encoded in proteobacterial genomes and red-algal plastid genomes. In this study, we found two distinct cbbX genes of Cyanidioschyzon merolae, a unicellular red alga, one encoded in the plastid genome and the other encoded in the cell nucleus. The phylogenetic tree inferred from cbbX genes and strongly conserved gene organization (rbcLS-cbbX) suggests that the plastid-...

متن کامل

Cyanidioschyzon merolae genome. A tool for facilitating comparable studies on organelle biogenesis in photosynthetic eukaryotes.

The ultrasmall unicellular red alga Cyanidioschyzon merolae lives in the extreme environment of acidic hot springs and is thought to retain primitive features of cellular and genome organization. We determined the 16.5-Mb nuclear genome sequence of C. merolae 10D as the first complete algal genome. BLASTs and annotation results showed that C. merolae has a mixed gene repertoire of plants and an...

متن کامل

Improvement of culture conditions and evidence for nuclear transformation by homologous recombination in a red alga, Cyanidioschyzon merolae 10D.

Although the nuclear genome sequence of Cyanidioschyzon merolae 10D, a unicellular red alga, was recently determined, DNA transformation technology that is important as a model plant system has never been available thus far. In this study, improved culture conditions resulted in a faster growth rate of C. merolae in liquid medium (doubling time = 9.2 h), and colony formation on gellan gum plate...

متن کامل

Mitochondrial localization of ferrochelatase in a red alga Cyanidioschyzon merolae.

Ferrochelatase (FECH) is an essential enzyme for the final step of heme biosynthesis. In green plants, its activity has been reported in both plastids and mitochondria. However, the precise subcellular localization of FECH remains uncertain. In this study, we analyzed the localization of FECH in the unicellular red alga, Cyanidioschyzon merolae. Immunoblot and enzyme activity analyses of subcel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 26 22  شماره 

صفحات  -

تاریخ انتشار 1998